
The fundamental purpose of the Geometry course is to formalize and extend students’ geometric experiences from the middle grades. This course includes standards from the conceptual categories of Geometry and Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. In this Geometry course, students explore more complex geometric situations and deepen their explanations of geometric relationships, presenting and hearing formal mathematical arguments. Important differences exist between this course and the historical approach taken in geometry classes. For example, transformations are emphasized in this course. For the Geometry course, instructional time should focus on six critical areas: (1) establish criteria for congruence of triangles based on rigid motions; (2) establish criteria for similarity of triangles based on dilations and proportional reasoning; (3) informally develop explanations of circumference, area, and volume formulas; (4) apply the Pythagorean Theorem to the coordinate plane; (5) prove basic geometric theorems; and (6) extend work with probability. (1) Students have prior experience with drawing triangles based on given measurements and performing rigid motions including translations, reflections, and rotations. They have used these to develop notions about what it means for two objects to be congruent. In this course, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems—using a variety of formats including deductive and inductive reasoning and proof by contradiction—and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work. (2) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students derive the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on their work with quadratic equations done in Algebra I. They are able to distinguish whether three given measures (angles or sides) define 0, 1, 2, or infinitely many triangles. (3) Students’ experience with three-dimensional objects is extended to include informal explanations of circumference, area, and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line. (4) Building on their work with the Pythagorean Theorem to find distances, students use the rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals, and slopes of parallel and perpendicular lines, which relates back to work done in the Algebra I course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola. 1 (5) Students prove basic theorems about circles, with particular attention to perpendicularity and inscribed angles, in order to see symmetry in circles and as an application of triangle congruence criteria. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations—which relates back to work done in the Algebra I course—to determine intersections between lines and circles or parabolas and between two circles. (6) Building on probability concepts that began in the middle grades, students use the language of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions. The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.
GEOMETRY
G
Mathematical Practices
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of
others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning