top of page

Building on their work with linear, quadratic, and exponential functions, students extend their repertoire of functions to include logarithmic, polynomial, rational, and radical functions in the Algebra II course. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. Standards that were limited in Algebra I no longer have those restrictions in Algebra II. Students work closely with the expressions that define the functions, competently manipulate algebraic expressions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the set of complex numbers and solving exponential equations using the properties of logarithms. For the Algebra II course, instructional time should focus on four critical areas: (1) relate arithmetic of rational expressions to arithmetic of rational numbers; (2) expand understandings of functions and graphing to include trigonometric functions; (3) synthesize and generalize functions and extend understanding of exponential functions to logarithmic functions; and (4) relate data display and summary statistics to probability and explore a variety of data collection methods. (1) A central theme of this Algebra II course is that the arithmetic of rational expressions is governed by the same rules as the arithmetic of rational numbers. Students explore the structural similarities between the system of polynomials and the system of integers. They draw on analogies between polynomial arithmetic and base-ten computation, focusing on properties of operations, particularly the distributive property. Connections are made between multiplication of polynomials with multiplication of multi-digit integers, and division of polynomials with long division of integers. Students identify zeros of polynomials, including complex zeros of quadratic polynomials, and make connections between zeros of polynomials and solutions of polynomial equations. The Fundamental Theorem of Algebra is examined. (2) Building on their previous work with functions and on their work with trigonometric ratios and circles in the Geometry course, students now use the coordinate plane to extend trigonometry to model periodic phenomena. (3) Students synthesize and generalize what they have learned about a variety of function families. They extend their work with exponential functions to include solving exponential equations with logarithms. They explore the effects of transformations on graphs of diverse functions, including functions arising in an application, in order to abstract the general principle that transformations on a graph always have the same effect regardless of the type of the underlying function. They identify appropriate types of functions to model a situation, they adjust parameters to improve the model, and they compare models by analyzing appropriateness of fit and making judgments about the domain over which a model is a good fit. The description of modeling as “the process of choosing and using mathematics and statistics to analyze empirical situations, to understand them better, and to make decisions” is at the heart of this Algebra II course. The narrative discussion and diagram of the modeling cycle should be considered when knowledge of functions, statistics, and geometry is applied in a modeling context. (4) Students see how the visual displays and summary statistics they learned in earlier grades relate to different types of data and to probability distributions. They identify different ways of collecting data—including sample surveys, experiments, and simulations—and consider how randomness and careful design affect the conclusions that can be drawn. The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.

​

ALGEBRA II

A2

Mathematical Practices 

 

1. Make sense of problems and persevere in solving them.

2. Reason abstractly and quantitatively.

3. Construct viable arguments and critique the reasoning of

       others.

4. Model with mathematics.

5. Use appropriate tools strategically.

6. Attend to precision.

7. Look for and make use of structure.

8. Look for and express regularity in repeated reasoning

bottom of page